C17	$-0.6538(3)$	$0.0617(2)$	$-0.3416(5)$	3.6
C18	$-0.5941(3)$	$0.0844(2)$	$-0.2508(5)$	3.6
C19	$-0.7577(3)$	$-0.0009(2)$	$-0.4079(5)$	3.5
C20	$-0.8288(4)$	$-0.0190(2)$	$-0.3758(6)$	5.6
C21	$-0.8912(4)$	$-0.0378(3)$	$-0.4734(7)$	6.5
C22	$-0.8819(4)$	$-0.0378(2)$	$-0.6047(6)$	5.0
C23	$-0.8100(4)$	$-0.0210(2)$	$-0.6356(6)$	5.0
C24	$-0.7485(4)$	$-0.0024(2)$	$-0.5382(5)$	4.6
C25	$-0.9455(4)$	$-0.0559(3)$	$-0.7104(7)$	6.2
C26	$-0.9948(4)$	$-0.0691(2)$	$-0.8038(7)$	6.7
C27	$-1.0126(8)$	$-0.0910(6)$	$-1.088(1)$	19.3
C28	$-1.130(1)$	$-0.1325(5)$	$-0.936(1)$	26.4
C29	$-1.1349(5)$	$-0.0319(4)$	$-0.999(1)$	10.8
C30	$-0.3836(4)$	$0.0757(2)$	$-0.2861(6)$	6.3
C31	$-0.2516(4)$	$0.1119(3)$	$-0.0672(7)$	7.3
C32	$-0.3634(5)$	$0.1797(3)$	$-0.2434(8)$	7.7
C33	$-0.3521(3)$	$0.1462(2)$	$0.2043(4)$	3.0
C34	$-0.3124(3)$	$0.1872(2)$	$0.1808(5)$	3.8
C35	$-0.2502(3)$	$0.2064(2)$	$0.2756(5)$	4.0
C36	$-0.2258(3)$	$0.1848(2)$	$0.3977(5)$	3.4
C37	$-0.2635(3)$	$0.1431(2)$	$0.4203(5)$	4.2
C38	$-0.3257(3)$	$0.1242(2)$	$0.3245(5)$	3.6
C39	$-0.1616(3)$	$0.2065(2)$	$0.5016(5)$	3.8
C40	$-0.1465(4)$	$0.2536(2)$	$0.5018(6)$	5.2
C41	$-0.0877(4)$	$0.2746(2)$	$0.5969(7)$	5.9
C42	$-0.0417(4)$	$0.2478(3)$	$0.6965(6)$	5.4
C43	$-0.0568(4)$	$0.2015(3)$	$0.6976(7)$	7.0
C44	$-0.1160(4)$	$0.1797(2)$	$0.6014(6)$	6.3
C45	$0.0206(4)$	$0.2701(2)$	$0.7952(6)$	5.6
C46	$0.0735(4)$	$0.2876(3)$	$0.8732(6)$	6.3
C47	$0.1206(6)$	$0.3756(4)$	$1.024(1)$	12.4
C48	$0.1894(6)$	$0.2812(4)$	$1.1303(8)$	11.1
C49	$0.2447(6)$	$0.3223(4)$	$0.896(1)$	12.0

Table 6. Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$ for (III)

$\mathrm{Co}-\mathrm{C} 1$	$2.002(4)$	$\mathrm{Co}-\mathrm{C} 8$	$2.052(6)$
$\mathrm{C}-\mathrm{C} 2$	$1.967(5)$	$\mathrm{Co}-\mathrm{C} 9$	$2.057(7)$
$\mathrm{Co}-\mathrm{C} 3$	$1.990(5)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.466(6)$
$\mathrm{Co}-\mathrm{C} 4$	$1.976(4)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.468(7)$
$\mathrm{Co}-\mathrm{C} 5$	$2.054(8)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.473(7)$
$\mathrm{Co}-\mathrm{C} 6$	$2.065(6)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.466(6)$
$\mathrm{Co}-\mathrm{C} 7$	$2.068(6)$		
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 4$	$87.4(4)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$87.2(4)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$92.5(4)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$	$92.8(4)$

All three structures were solved using the Patterson function with SHELXS86 software (Sheldrick, 1985). All the H atoms were calculated. In (II), $B_{\text {eq }}$ values for the C atoms in one of the phenyl groups are abnormally large, suggesting rotational disorder. In (III), $B_{\text {eq }}$ values for the terminal trimethylsilyl C atoms ($10.8-26.4 \AA^{2}$) are abnormally large, again suggesting disorder. Refinements were carried out using CRYSTAN-GM software (MAC Science, 1992) on a SUN SPARC2 workstation. Molecular graphics were obtained using ORTEP (Johnson, 1965).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1111). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Gastinger, R. G., Rausch, M. D., Sullivan, D. A. \& Palenik, G. J. (1976). J. Am. Chem. Soc. 98, 719-723.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
MAC Science (1992). CRYSTAN-GM. Program for X-ray Crystal Structure Analysis. MAC Science, Tokyo, Japan.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Shimura, T., Ohkubo, A., Aramaki, K., Uekusa, H., Fujita, T., Ohba, S. \& Nishihara, H. (1995). Inorg. Chim. Acta, 230, 215-218.

Acta Cryst. (1995). C51, 2269-2271

trans- $\mathbf{N i}(\mathrm{Mes})\left[\mathbf{N}(\mathbf{P h}) \mathbf{C}(\mathbf{O}) \mathbf{N}(\mathbf{H}) \mathrm{CMe}_{3}\right]$ $\left(\mathrm{PMe}_{3}\right)_{2}$

Jonathan Penney, Daniel D. VanderLende,
James M. Boncella and Khall A. Abboud*
Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA

(Received 18 July 1994; accepted 29 March 1995)

Abstract

The title compound, trans-(3-tert-butyl-1-phenylureido)-(2,4,6-trimethylphenyl)bis(trimethylphosphine)nickel(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right)\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}\right)_{2}\right.$], has been synthesized and its crystal structure determined as part of our continuing investigation into the reactivity and stability of the late-transition-metal amide complexes. The Ni atom has square-planar coordination geometry; two trans sites are occupied by PMe_{3} ligands. The geometry around the amide N atom is planar due to the interaction of its lone pair with the carbonyl π system. A relatively long $\mathrm{Ni}-\mathrm{N}$ bond, 1.978 (6) \AA, is interpreted as arising from a lack of significant π interaction between the amide N atom and the Ni metal centre.

Comment

Recently, the chemistry of late-transition-metal amide complexes (Groups 8-10) has been studied extensively (Bryndza \& Tam, 1988; Roundhill, 1992; Boncella \& Villanueva, 1994). This interest in transition-metal amide complexes arises from their potential to facilitate $\mathrm{C}-\mathrm{N}$ bond formation between amine derivatives and unsaturated organic compounds. This chemistry has been slow to develop, mainly because the inability of the electronically saturated metal centre to accommodate π donation from the lone-pair electrons of the amide N atom results in a weak metal-nitrogen bond (Lappert, Power, Sanger \& Srivsastrava, 1980). With newer methods for the synthesis of metal amide complexes, the chemistry of these compounds can be explored. We report the structure of the product, (I), of the reaction between a late-transition-metal amide complex and 'BuNCO. The structure reveals that the ${ }^{t} \mathrm{BuNCO}$ has inserted into the $\mathrm{N}-\mathrm{H}$ bond.

(I)

A displacement ellipsoid drawing (SHELXTL-Plus; Sheldrick, 1990) of the molecule with the atom-labeling scheme is shown in Fig. 1. The mesityl ring and the amidophenyl ring are oriented perpendicular to the plane of coordination around the Ni atom, thus minimizing steric strain around the Ni atom. The coordination plane forms angles of $93.4(2)$ and $90.4(2)^{\circ}$ with the planes of the mesityl and the amidophenyl rings, respectively. The $\mathrm{Ni}-\mathrm{N} 1$ bond length of 1.978 (6) \AA indicates that there is no significant interaction between the lone-pair electrons on Nl and the Ni centre. This bond is considerably longer than the corresponding bond in trans$\left[\mathrm{Ni}(\mathrm{Mes})(\mathrm{NHPh})\left(\mathrm{PMe}_{3}\right)_{2}\right] \quad[1.932(3) \AA$; VanderLende, Boncella \& Abboud, 1995] where strong interaction with the N -atom lone pair shortens the $\mathrm{Ni}-\mathrm{N} 1$ bond. It is, however, comparable with the corresponding bond in trans- $\left[\mathrm{Ni}(\mathrm{Mes})\left\{\mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{CHPh}_{2}\right\}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ [1.974 (3) Å; VanderLende, Abboud \& Boncella, 1994]. The relatively long N1-C7 and $\mathrm{C}=\mathrm{O}$ bonds, and short $\mathrm{N} 1-\mathrm{C} 13$ and $\mathrm{N} 2-\mathrm{C} 13$ bonds, suggest electronic interaction between the carbonyl π bond and the N 1 and N 2 lone pairs. Delocalization of electrons along the fouratom moiety ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 13, \mathrm{O} 1$) is further supported by the near planarity of the $>\mathrm{N} 1-\mathrm{C}(=\mathrm{O})-\mathrm{N} 2<$ fragment (torsion angles vary from -10.7 to 13.5°).

Fig. 1. Molecular structure of (I) with 50% probability ellipsoids and showing the atom-numbering scheme.

Experimental

Using Schlenk techniques, one equivalent of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNCO}$ was added to a solution of $\left[\mathrm{Ni}(\mathrm{Mes})(\mathrm{NHPh})\left(\mathrm{PMe}_{3}\right)_{2}\right]$ in benzene. After stirring for 12 h , the solvent was removed under reduced pressure. The solid was dissolved in 20 ml of pentane and concentrated to ca 5 ml under reduced pressure. The solution was cooled to 263 K to produce
trans-[$\left.\mathrm{Ni}(\mathrm{Mes})\left\{\mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{CMe}_{3}\right\}\left(\mathrm{PMe}_{3}\right)_{2}\right]$, (I), as bright yellow crystals. Although (I) slowly decomposes in air, crystals were placed in individual thin-walled glass capillary tubes and flame-sealed in the open atmosphere.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right)\right.$ $\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}\right)_{2}$]
$M_{r}=521.28$
Monoclinic
$P 2_{1} / n$
$a=8.575$ (2) \AA
$b=20.711$ (4) \AA
$c=16.583$ (3) \AA
$\beta=99.91$ (2) ${ }^{\circ}$
$V=2901(1) \AA^{3}$
$Z=4$
$D_{x}=1.193 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens $P 3 \mathrm{~m} / \mathrm{V}$ diffractometer
ω scans
Absorption correction: analytical
$T_{\text {min }}=0.762, T_{\text {max }}=$ 0.876

5650 measured reflections
5110 independent reflections
2151 observed reflections
$[F>6 \sigma(F)]$

Refinement

Refinement on F
$R=0.0571$
$w R=0.0627$
$S=1.70$
2151 reflections
289 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}(F)+0.0004 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.82 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.51 \mathrm{e} \AA^{-3}$

Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=$	$(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.		
x	y	z	U_{eq}
$0.01938(13)$	$0.08545(5)$	$0.25886(6)$	$0.0371(4)$
$-0.1409(3)$	$0.09515(12)$	$0.34935(13)$	$0.0479(9)$
$0.1880(3)$	$0.07969(14)$	$0.17252(14)$	$0.0545(10)$
$-0.3103(9)$	$-0.0406(3)$	$0.1397(5)$	$0.105(4)$
$-0.1550(8)$	$0.0493(3)$	$0.1779(4)$	$0.040(3)$
$-0.0794(9)$	$-0.0520(3)$	$0.2261(4)$	$0.061(3)$
$0.1884(9)$	$0.1184(4)$	$0.3405(5)$	$0.039(3)$
$0.2171(10)$	$0.1847(4)$	$0.3511(5)$	$0.046(3)$
$0.1209(11)$	$0.2342(4)$	$0.2965(5)$	$0.064(4)$
$0.3324(10)$	$0.2063(5)$	$0.4173(5)$	$0.061(4)$
$0.4168(11)$	$0.1646(6)$	$0.4717(5)$	$0.064(4)$
$0.5424(11)$	$0.1905(6)$	$0.5410(6)$	$0.099(5)$
$0.3871(11)$	$0.0996(5)$	$0.4613(5)$	$0.057(4)$
$0.2767(10)$	$0.0766(5)$	$0.3971(5)$	$0.046(3)$
$0.2448(10)$	$0.0047(4)$	$0.3926(5)$	$0.063(4)$
$-0.2433(9)$	$0.0912(4)$	$0.1203(4)$	$0.039(3)$
$-0.2209(11)$	$0.1572(4)$	$0.1301(5)$	$0.051(4)$

C9	$-0.3021(12)$	$0.2016(5)$	$0.0776(5)$	$0.063(4)$
C10	$-0.4075(11)$	$0.1817(6)$	$0.0112(6)$	$0.068(4)$
C11	$-0.4291(12)$	$0.1165(6)$	$-0.0028(5)$	$0.065(4)$
C12	$-0.3513(10)$	$0.0720(4)$	$0.0511(5)$	$0.052(3)$
C13	$-0.1910(12)$	$-0.0150(5)$	$0.1767(5)$	$0.059(4)$
C14	$-0.0874(15)$	$-0.1228(5)$	$0.2336(6)$	$0.067(5)$
C15	$-0.234(2)$	$-0.1439(5)$	$0.2629(7)$	$0.117(7)$
C16	$-0.083(2)$	$-0.1536(5)$	$0.1523(7)$	$0.122(7)$
C17	$0.0537(15)$	$-0.1433(5)$	$0.2940(8)$	$0.141(7)$
C18	$-0.2928(14)$	$0.1557(6)$	$0.3239(7)$	$0.126(7)$
C19	$-0.0617(12)$	$0.1148(5)$	$0.4552(5)$	$0.088(5)$
C20	$-0.2605(12)$	$0.0260(5)$	$0.3631(6)$	$0.093(6)$
C21	$0.1101(13)$	$0.0643(9)$	$0.0694(6)$	$0.201(11)$
C22	$0.336(2)$	$0.0197(7)$	$0.1941(8)$	$0.177(10)$
C23	$0.309(2)$	$0.1483(6)$	$0.1631(8)$	$0.154(9)$

Table 2. Selected geometric parameters $\left({ }^{(},^{\circ}\right)$

$\mathrm{P} 1-\mathrm{Ni}$	$2.212(3)$	$\mathrm{C} 22-\mathrm{P} 2$	$1.766(14)$
$\mathrm{P} 2-\mathrm{Ni}$	$2.206(3)$	$\mathrm{C} 23-\mathrm{P} 2$	$1.780(14)$
$\mathrm{N} 1-\mathrm{Ni}$	$1.978(6)$	$\mathrm{C} 13-\mathrm{O} 1$	$1.220(12)$
$\mathrm{C} 1-\mathrm{Ni}$	$1.930(7)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.411(10)$
$\mathrm{C} 18-\mathrm{P} 1$	$1.804(12)$	$\mathrm{C} 13-\mathrm{N} 1$	$1.366(12)$
$\mathrm{C} 1-\mathrm{P} 1$	$1.816(9)$	$\mathrm{C} 13-\mathrm{N} 2$	$1.379(11)$
$\mathrm{C} 20-\mathrm{P} 1$	$1.798(11)$	$\mathrm{C} 14-\mathrm{N} 2$	$1.475(12)$
$\mathrm{C} 21-\mathrm{P} 2$			
$\mathrm{P} 1-\mathrm{Ni}-\mathrm{P} 2$	$176.84(12)$	$\mathrm{C} 20-\mathrm{P} 1-\mathrm{Ni}$	$116.6(4)$
$\mathrm{P} 1-\mathrm{Ni}-\mathrm{N} 1$	$90.5(2)$	$\mathrm{C} 21-\mathrm{P} 2-\mathrm{C} 22$	$102.1(7)$
$\mathrm{P} 2-\mathrm{Ni}-\mathrm{N} 1$	$92.4(2)$	$\mathrm{C} 21-\mathrm{P} 2-\mathrm{C} 23$	$100.9(7)$
$\mathrm{P} 2-\mathrm{Ni}-\mathrm{C} 1$	$88.7(3)$	$\mathrm{C} 21-\mathrm{P} 2-\mathrm{Ni}$	$117.4(4)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{C} 1$	$178.0(3)$	$\mathrm{C} 22-\mathrm{P} 2-\mathrm{C} 23$	$99.9(6)$
$\mathrm{C} 1-\mathrm{Ni}-\mathrm{P} 1$	$88.4(3)$	$\mathrm{C} 22-\mathrm{P} 2-\mathrm{Ni}$	$115.7(5)$
$\mathrm{C} 18-\mathrm{P} 1-\mathrm{C} 19$	$101.9(5)$	$\mathrm{C} 23-\mathrm{P} 2-\mathrm{Ni}$	$118.0(5)$
$\mathrm{C} 18-\mathrm{P} 1-\mathrm{C} 20$	$100.3(5)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 13$	$119.8(7)$
$\mathrm{C} 18-\mathrm{P} 1-\mathrm{Ni}$	$114.3(4)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Ni}$	$118.8(5)$
$\mathrm{C} 19-\mathrm{P} 1-\mathrm{C} 20$	$100.5(5)$	$\mathrm{C} 13-\mathrm{N} 1-\mathrm{Ni}$	$121.4(5)$
$\mathrm{C} 19-\mathrm{Pl}-\mathrm{Ni}$	$120.2(4)$	$\mathrm{C} 13-\mathrm{N} 2-\mathrm{C} 14$	$124.3(8)$

The ω-scan width was symmetrically over 1.2° about the $K \alpha_{1,2}$ maximum and the background was offset 1.0 and -1.0° in ω from the $K \alpha_{1,2}$ maximum. The scan speed was a variable $3-6^{\circ} \mathrm{min}^{-1}$ (depending upon intensity). The linear absorption coefficient was calculated using values from International Tables for X-ray Crystallography (1974). The structure was solved by the heavy-atom method from which the position of the Ni atom was obtained.

SHELXTL-Plus (Sheldrick, 1990) was used for cell refinement, data collection, data reduction, structure solution (direct methods) and molecular graphics. SHELX76 (Sheldrick, 1976) was used for structure refinement (full-matrix least-squares).

KAA wishes to acknowledge the University of Florida, Division of Sponsored Research, for financial support of the crystallography. Acknowledgement is also made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work.

[^0]
References

Boncella, J. M. \& Villanueva, L. A. (1994). J. Organomet. Chem. 465, 297-304.
Bryndza, H. E. \& Tam, W. (1988). Chem. Rev. 88, 1163-1188.

Lappert, M. F., Power, P. P., Sanger, A. R. \& Srivsastrava, R. C. (1980). Metal and Metalloid Amides. Chatham: Halsted Press.

Roundhill, D. M. (1992). Chem. Rev. 92, 1-27.
Sheldrick, G. M. (1976). SHELX76. Program for the Determination of Crystal Structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). SHELXTL-Plus. Version 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
VanderLende, D. D., Boncella, J. M. \& Abboud, K. A. (1995). Acta Cryst. C51, 591-593.
VanderLende, D. D., Abboud, K. A. \& Boncella, J. M. (1995). Inorg. Chem. In the press.

Acta Cryst. (1995). C51, 2271-2273
Bis[bis(triphenylphosphoranylidene)ammonium] Bis[cyanodithiocarbimato$\operatorname{gold}(\mathrm{I})],\left[\mathrm{PPN}_{2}\left[\mathrm{Au}_{2}\left(\mathrm{~S}_{2} \mathbf{C N C N}\right)_{2}\right]\right.$

Zerihun Assefa, Richard J. Staples and John P. Fackler Jr

Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A\&M
University, College Station, TX 77843-3255, USA
(Received 14 September 1994; accepted 31 March 1995)

Abstract

The title complex, bis[bis(triphenylphosphoranylidene)ammonium] bis [μ-cyanodithiocarbamato(2-)-S: $\left.S^{\prime}\right]$ digold(I), $\left[\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2} \mathrm{~N}\right]_{2}\left[\mathrm{Au}_{2}\left(\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$, displays a short $\mathrm{Au} \cdots \mathrm{Au}$ contact of $2.813(1) \AA$, which is slightly longer than the value of $2.796(1) \AA$ found in the similar structure of the anionic $\mathrm{Au}_{2}(i-\mathrm{mnt})_{2}{ }^{2-}$ dimer (i mnt is 1,1-dicyano-2,2-ethenedithiolate). The complex oxidatively adds halogens to form green $\mathrm{Au}^{\text {II }}$ dimers which are unstable at room temperature.

Comment

While gold(I) complexes often display short $\mathrm{Au} \cdots \mathrm{Au}$ contacts, ranging from 2.7 to $3.3 \AA$, little is known about the dependence of this interaction on the ligand bound to the Au-atom center. Neutral and anionic bridged dinuclear dithiocarbamate (Heinrich, Wang \& Fackler, 1990) and 1,1-dithiolate gold(I) complexes (Khan, Wang \& Fackler, 1989) are known to contain some of the shortest Au••Au distances. In addition, both the neutral (Calabro et al., 1981) and the anionic 1,1-dithiolate (Khan, Wang \& Fackler, 1989) species are known to add halides oxidatively to form Au ${ }^{\text {II }}$ dimers. As a consequence of better σ donation, the oxidative addition product formed with the dianionic 1,1-dithiolate ligand is more stable than the neutral dithiocarbamate dimer product. Compared with i-mnt (1,1-dicyano-2,2-

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: SZ1022). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

